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By employing a semianalytical dynamical mean-field approximation theory previously proposed by the
author[H. Hasegawa, Phys. Rev. E67, 041903(2003)], we have developed an augmented moment method
(AMM ) in order to discuss dynamics of anN-unit ensemble described by Langevin equations with delays. In
an AMM, original N-dimensionalstochasticdelay differential equations(SDDEs) are transformed to infinite-
dimensionaldeterministicDEs for means and correlations of local as well as global variables. Infinite-order
DEs arising from the non-Markovian property of SDDE, are terminated at the finite levelm in the level-m
AMM sAMM md, which yieldss3+md-dimensional deterministic DEs. Model calculations have been made for
linear and nonlinear Langevin models. The stationary solution of AMM for the linear Langevin model with
N=1 is nicely compared to the exact result. In the nonlinear Langevin ensemble, the synchronization is shown
to be enhanced near the transition point between the oscillating and nonoscillating states. Results calculated by
AMM6 are in good agreement with those obtained by direct simulations.
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I. INTRODUCTION

The time delay plays an important role in many systems
such as optical devices[1] and physiological[2] and biologi-
cal [3] systems. The effect of time delays has been theoreti-
cally studied by using the time-delay differential equations
(DEs). Its exposed behavior includes the multistability and
the bifurcation leading to chaos. It is well known that noise
also plays important roles in these systems, and its effects
have been thoroughly investigated with the use of stochastic
DEs. One of its representative phenomena is the stochastic
resonance[4], in which the signal-to-noise ratio is enhanced
for subthreshold signals.

In real systems, both noises and time delays coexist, and
the combined effect may be described by stochastic delay
differential equation(SDDE). For instance, SDDEs are used
in optics [5] and physiology[6] to model noise-driven sys-
tems exhibiting delay feedback. In recent years, there has
been a growing interest in combined effects of noise and
delay. The theory for SDDE remains much less studied and
has been a subject of several recent papers[7–14], in which
the stability condition for the equilibrium solution of linear
delay Langevin equation has been studied. Its stationary so-
lution is investigated by using the step by step method[7]
and the moment method[8]. The Fokker-Planck equation
(FPE) method is applied to SDDE in the limit of a small
delay[9]. These studies have been confined to the stationary
solution of SDDE. More interesting is, however, expected to
be its dynamics in a stochastic system with a large time
delay.

Real physiological and biological systems usually consist
of many elements, each of which is described by SDDE. A
typical example is a living brain, in which a small cluster
contains thousands of similar neurons. Each neuron which is

subject to various kinds of noises, receives spikes from hun-
dreds of other neurons through dendrites with a transmission
delay and generates spikes propagating along axons. Theo-
retical study on such coupled, stochastic systems has been
made by using direct simulations(DSs) [15–17] and analyti-
cal methods like FPE[18]. Since the time to simulate such
systems by conventional methods grows asN2 with N, the
size of the ensemble, it is rather difficult to simulate systems
with the realistic size ofN,100–1000. Although FPE is a
powerful method in dealing with the stochastic DE, a simple
application of FPE to SDDE fails because of the non-
Markovian property of SDDE: an evaluation of the probabil-
ity density at the timet requires prior knowledge of the con-
ditional probability density between times oft and t−t, t
being the delay time.

Quite recently the present author[19,20] proposed a dy-
namical mean-field approximation(DMA ) as a semianalyti-
cal method dealing with large-scale ensembles subject to
noises, extending the moment method[21–23]. DMA has
been first applied to anN-unit ensemble described by the
FitzHugh-Nagumo(FN) neuron model without time delays
[24], for which original 2N-dimensional stochastic DEs are
transformed to eight-dimensional deterministic DEs for mo-
ments of local and global variables[19]. In a subsequent
paper[20], DMA is applied to anN-unit general neuron en-
semble, each of which is described by coupled
K-dimensional DEs, transformingKN-dimensional DEs to
Neq-dimensional DEs whereNeq=KsK+2d. In the case of the
Hodgkin-Huxley (HH) model with K=4 [25], we get Neq
=24. The spiking-time precision and the synchronization in
FN and HH neuron ensembles have been studied as functions
of the noise intensity, the coupling strength and the ensemble
size. The feasibility of DMA has been demonstrated in Refs.
[19] and [20].

The purpose of the present paper is to apply DMA to
Langevin ensembles with delays, which are expected to be
good models representing not only interconnected neural net-*Email address: hasegawa@u-gakugei.ac.jp
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works but also social and technological ones. When DMA is
applied to ensembles described by linear and nonlinear
Langevin equations with delays, the originalN-dimensional
stochastic DEs are transformed to the infinite-dimensional
deterministic DEs for means and correlation functions of lo-
cal and global variables. Infinite-order recursive DEs arising
from the non-Markovian property of SDDE, are terminated
at the finite levelm in our approximate method, which is
hereafter referred to as theaugmented moment method
(AMM ). We may study dynamics and synchronization of lin-
ear and nonlinear Langevin ensembles with delayed cou-
plings, and examine the validity of AMM whose results are
compared to results of DSs. In particular, for the linear
Langevin model withN=1, a comparison is possible with the
exact stationary solution[7].

The paper is organized as follows. In Sec. II, we describe
the adopted model and method to derive the infinite-
dimensional deterministic DEs from the original
N-dimensional stochastic DEs. Infinite-order recursive DEs
are terminated at the finite levelm in the level-m AMM
sAMM md. Model numerical calculations for the linear
Langevin model are reported in Sec. III A, where calculated
results of AMM6 forN=1 are nicely compared to exact so-
lutions available for the stationary state[7]. Our AMM is
compared also to the small-delay approximation(SDA) [9]
which is valid for a very small delay. In Sec. III B, we
present model calculations for the nonlinear Langevin model
in which the stable oscillation is induced by an applied spike
for an appreciable delay. The synchronization in the en-
semble is investigated. It is shown that results of AMM6 are
in good agreement with those of DSs. The final Sec. IV is
devoted to conclusions and discussions. In a following paper
[26], our AMM has been applied to ensembles described by
the noisy FN neuron model with delayed couplings.

II. ENSEMBLES DESCRIBED BY THE LANGEVIN
MODEL: BASIC FORMULATION

Dynamics of a Lanvegin ensemble with delayed cou-
plings is assumed to be described by

dxistd
dt

= F„xistd… +
w

N
o

j

H„xjst − td… + jistd + I sedstd,

si = 1 to Nd s1d

with

I sedstd = AQst − tindQstin + Tw − td. s2d

HereFsxd andHsxd are functions ofx, whose explicit forms
will be shown later[Eqs. (18), (19), (29), (30), (43), and
(44)]. We have assumed uniform all-to-all couplings ofw
and time delays oft. The former assumption has been widely
employed in many theoretical studies. The latter assumption
may be justified in certain neural networks[27]. White
noises of jistd are given by kjistdl=0 and kjistdj jst8dl
=b2di jdst− t8d with the noise intensity ofb [28]. An applied
input of I sedstd given by Eq.(2) triggers oscillations in en-
sembles when model parameters are appropriate, as will be

shown in Sec. III,Qstd denoting the Heaviside function,A
the magnitude,tin the input time, andTw the spike width.

In DMA [19], the global variable is given by

Xstd =
1

No
i

xistd, s3d

with which we define means and correlation functions given
by

mstd = kXstdl, s4d

gst,t8d =
1

N
o

i

kdxistddxist8dl, s5d

rst,t8d = kdXstddXst8dl, s6d

usingdxistd=xistd−mstd anddXstd=Xstd−mstd.
In deriving equations of motion of means and variances,

we have assumed that the noise intensity is weak and that the
state variables obey the Gaussian distributions around their
means, as in Refs.[19,20]. Numerical simulations have
shown that for weak noises, the distribution of the state vari-
able of an active rotator model nearly obeys the Gaussian
distribution, although for strong noises, its distribution devi-
ates from the Gaussian[23]. Similar behavior has been re-
ported also in FN[22,23] and HH neuron models[29,30].

After some manipulations, we get DEs formstd, gst ,td,
andrst ,t8d given by (for details see Appendix A),

dmstd
dt

= g0std + wu0st − td + I sedstd, s7d

dgst,td
dt

= 2g1stdgst,td + 2wu1st − tdrst,t − td + b2, s8d

drst,td
dt

= 2g1stdrst,td + 2wu1st − tdrst,t − td +
b2

N
, s9d

drst,t − mtd
dt

= fg1std + g1st − mtdgrst,t − mtd

+ wu1„t − sm+ 1dt…r„t,t − sm+ 1dt…

+ wu1st − tdrst − t,t − mtd +
b2

N
Dsmtd,

sfor mù 1d s10d

with

g0std = o
n=0

`
Fs2ndstd

n!
Sgst,td

2
Dn

, s11d

g1std = o
n=0

`
Fs2n+1dstd

n!
Sgst,td

2
Dn

, s12d

u0std = o
n=0

`
Hs2ndstd

n!
Sgst,td

2
Dn

, s13d
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u1std = o
n=0

`
Hs2n+1dstd

n!
Sgst,td

2
Dn

, s14d

whereDsxd=1 for x=0 and 0 otherwise. Equations(7)–(10)
show that an equation of motion ofrst ,t−td includes new
terms of rst−t ,t−td and rst ,t−2td, which arise from the
non-Markovian property of SDDE. The recursive structure of
DEs for rst ,td is schematically expressed in Fig. 1, where
arrows express the mutual dependence:rst ,td depends on
rst ,t−td, and rst ,t−td depends onrst ,t−2td and rst−t ,t
−td, and so on. Then DMA transforms the original
N-dimensional SDDEs given by Eqs.(1) and (2) to the
infinite-dimensional deterministic DEs given by Eqs.
(7)–(10).

In actual numerical calculations, we will adopt the level-
m approximationsAMM md in which DEs are terminated at
the finite levelm:

r„t,t − sm+ 1dt… = rst,t − mtd. s15d

As will be shown later in model calculations with changing
m, the calculated result converges at a rather smallm [Figs.
2(a) and 9(b)].

We note that the noise contribution isb2 in Eq. (8) and it
is b2/N in Eq. (9). It is easy to get

rst,td =
gst,td

N
for w/b2 → 0, s16d

=gst,td for b2/w → 0. s17d

Equation(16) is consistent with the central-limit theorem.
We will show later that with varying model parameters, the
ratio of rst ,td /gst ,td is varied, which leads to a change in the
synchronization of ensembles[Eq. (27)].

DSs have been performed for Eqs.(1) and (2) by using
the fourth-order Runge-Kutta method with a time step of
0.01. Initial values of variables attP s−t ,0g arexistd=xp for
i =1 to N, wherexp is the stationary solution forb=0. The
trial number of DSs to be reported in the next Sec. III is
Nr =100 otherwise noticed. AMM calculations have been
performed for Eqs.(7)–(10) with Eq. (15) by using also the
fourth-order Runge-Kutta method with a time step of 0.01.
Initial values aremstd=xp and gst ,td=0 at tP f−t ,0g, and
rst ,t8d=0 at tP f−t ,0g andt8P f−t ,0gstù t8d. All calculated
quantities are dimensionless.

III. MODEL CALCULATIONS

A. Linear model

We first consider the linearsLd model given by

Fsxd = − ax sa ù 0d, s18d

Hsxd = x. s19d

The stability of the stationary solution of Eqs.(1), (18), and
(19) with N=1 andI sedstd=0 was discussed in Refs.[7–13],
in particular, with the use of the moment method by Mackey
and Nechaeva[8]. When Eqs.(18) and(19) are adopted, Eqs.
(7)–(10) become

dmstd
dt

= − amstd + wmst − td + I sedstd, s20d

dgst,td
dt

= − 2agst,td + 2wrst,t − td + b2, s21d

drst,td
dt

= − 2arst,td + 2wrst,t − td +
b2

N
, s22d

drst,t − mtd
dt

= − 2arst,t − mtd + wr„t,t − sm+ 1dt…

+ wrst − t,t − mtd + Sb2

2
DDsmtd,

sfor mù 1d s23d

FIG. 1. The recursive structure of equations of motionsrst ,td in
AMM, arrows denoting the mutual dependence(see text).

FIG. 2. (a) The stationary solution ofgst ,td, gp, of the linear(L)
model given by Eqs.(18) and (19) calculated in AMM m with
changing the levelm (solid curves) and in the exact calculation
(dashed lines) for varioust with a=1, w=0.5,b=0.001, andN=1.
(b) The t dependence ofgp in AMM6 (the solid curve), SDA (the
dotted curve), and exact calculations(the dashed curve) for a=1,
w=0.5,b=0.001, andN=1. (c) Thew dependence ofgp for various
t in AMM6 (solid curves) and exact calculations(dashed curves)
for b=0.001 andN=1. Results are multiplied by a factor of 106,
and those oft=5, 2, 1, and 0 in(a) and(c) are successively shifted
upwards by 1.
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becauseg0std=−amstd, g1std=−a, u0std=mstd andu1std=1 in
Eqs.(11)–(14).

For b=0 andI sedstd=0, Eq. (20) has the stationary solu-
tion of mp=0. Linearizingmstd aroundmp, we get the condi-
tion for the stationary solution given by

t , tc =
cos−1sa/wd
Îw2 − a2

, s24d

which is just the same as theN=1 case[8].

1. N=1 case

First we discuss model calculations forN=1, for which
the exact solution of its stationary state is available. From
Eqs. (21) and (22), we getrst ,t8d=gst ,t8d in the case ofN
=1. Solid curves in Fig. 2(a) expressgp, the stationary value
of gst ,td, when the levelm in AMM m is varied for a=1,
w=0.5, andb=0.001, whereas dashed curves denote the ex-
act result given by[7]

gp = S w sinhstdd − d

2dfw coshstdd − agDb2 for uwu , a, s25d

where d=Îa2−w2. Equation(25) yields 106gp=1.0, 0.724,
0.635, 0.581, and 0.577 fort=0, 1, 2, 5, and 10, respectively.
Figure 2(a) shows that fort=0, the result of AMM agrees
with the exact one formù0. In the case oft=1, the result of
AMM is larger than the exact one form=0, but the former is
smaller than the latter formù1. This is the case also fort
=2. In contrast, in cases oft=5 and 10, the results of AMM
are in good agreement with the exact ones formù1. It is
surprising that the results of AMM converge at a small
ms,1d.

Solid and dashed curves in Fig. 2(b) show thet depen-
dence ofgp of AMM6 and the exact result, respectively
(hereafter we show results in AMM6). The result of AMM is
in a fairly good agreement with the exact one fort.4. It is
interesting to make a comparison with results calculated by
the small-delay approximation(SDA) initiated in Ref. [9],
some details of SDA being given in Appendix B. The dotted
curve in Fig. 2(b) expressesgp calculated in SDA forw
=0.5,b=0.001, andN=1. Although the result of SDA agrees
with the exact one at very smallt s,0d, it shows a signifi-
cant deviation from the exact one att.2, wheregp becomes
negative violating its positive definiteness.

Solid and dashed curves in Fig. 2(c) express thew depen-
dence ofgp of AMM and exact ones, respectively, for vari-
oust values withb=0.001 andN=1. We note that an agree-
ment between AMM and exact results is good except for
w.0.6 with t=1–2 and forw,−0.8 with t=2–10. From
the results shown in Figs. 2(a)–2(c), we may say that AMM
is a good approximation for a larget sù4d and a smallb.

The response of the Langevin modelsN=1d will be dis-
cussed to an applied spike ofI sedstd given by Eq.(2) with
As=0.5d, tins=100d, andTws=10d. Figures 3(a) and 3(b) show
the time courses ofmstd and gst ,td(=rst ,td), respectively,
with a set of parameters ofa=1, w=0.5, b=0.001, andN
=1, an input spike ofI sedstd being shown at the bottom of Fig.
3(a). Note that results calculalted for different parameters are

vertically shifted for clarity in Fig. 3(also in Figs. 4, 7, and
8). When an input spike is applied att=100, state variables
of xistd are randomized because independent noises have
been added sincet=0. Solid and dashed curves in Fig. 3(a),
which denote results of AMM and DSs, respectively, are
practically identical. The dotted curve expressingmstd of
SDA is in fairly good agreement with that of DSs fort=1,
but the former completely disagrees with the latter fort
ù2. We should note in Eqs.(20)–(23) thatmstd is decoupled
from gst ,td and rst ,td, thengst ,td is independent of an ex-
ternal input I sedstd. Figure 3(b) shows that time courses of
gst ,td of AMM and DS are almost identical fort=0. For t
=1, the result of the AMM is underestimated compared to
that of DS as discussed before. However, an agreement of
the result of AMM with that of DS becomes better fort
ù4. Results ofgst ,td of DS at larget (.100) are in good
agreement with the exact stationary solution ofgp shown in
Fig. 2(c).

2. N.1 case

We will discuss dynamics, in particular the synchroniza-
tion, of ensembles forN.1. In order to monitor the synchro-
nization, we consider the quantity given by[19]

Rstd =
1

N2o
i

kfxistd − xjstdg2l = 2fgst,td − rst,tdg. s26d

When all neurons are in the completely synchronous states,
we getxistd=Xstd for all i and thenRstd=0. In contrast, in the
asynchronous states, we getRstd=2s1−1/Ndgst ,td;R0std
becauserst ,td=gst ,td /N [Eq. (16)]. Thesynchronization ra-
tio Sstd is defined by[19]

Sstd = 1 −
Rstd
R0std

= SNrst,td/gst,td − 1

N − 1
D , s27d

which becomes 1(0) for completely synchronous(asynchro-
nous) states. The synchronyss of the ensemble is defined by

FIG. 3. (Color online) The time course of(a) mstd and(b) gst ,td
of the L model for an applied single spike shown at the bottom
frame in (a), calculated in AMM (solid curves), the small-delay
approximation(SDA; dotted curves) and direct simulations(DS;
dashed curves) with a=1, w=0.5, b=0.001, andN=1: results of
mstd for AMM and DS are indistinguishable, and results of SDA are
shown only fortø2 (see the text).
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ss = Sstd = S 1

t2 − t1
DE

t1

t2

dt Sstd, s28d

where the overline denotes the temporal average between
times t1 s=2000d and t2 s=3000d.

Figures 4(a) and 4(b) show the time course ofmstd and
Sstd, respectively, for variousw with t=10, b=0.001, and
N=10, solid and dashed curves denoting results of AMM and
DS, respectively. Forw=0, mstd behaves as a simple relax-
ation process with the relaxation time oftr =1/a=1, while
Sstd is vanishing. When a small, positive coupling ofw
=0.4 is introduced,mstd shows the stairlike structure because
of the positive delayed feedback. The synchronization ratio
Sstd for w=0.4 shows a gradual development as increasingt,
but the magnitude of its averaged value ofss is very small
s,0.015d. Whenw is more increased tow=0.8, the effective
relaxation time formstd to return to the initial zero value
becomes larger andss becomes also larger. Forw=1.0, the
effective relaxation time becomes infinity andmstd remains
at the finite value ofmstd=0.455. Forw.1, the divergence
in mstd is triggered by an input spike andSstd tends to a fully
synchronized state ofss=1. On the contrary, for a small
negative coupling ofw=−0.4, mstd shows an ostensibly
quasi-oscillating state because of negative delayed feedback.
With increasing magnitude of negativew, the term showing
this quasi-oscillation becomes longer. Forw,−1.2, mstd
shows a divergent oscillation andSstd tends to saturate at
unity for t.250.

Thew dependence ofss, which is the temporal average of
Sstd, is depicted in Fig. 5(a), where solid and dashed curves
show results of AMM and DS with 1000 trials, respectively:
error bars showing the root-mean-square(RMS) value of DS
are within the radius of circles. Althoughss is very small for
uwu,0.9, it is suddenly increased asuwu approaches the unity,
where the divergence of the autonomous oscillation is in-
duced as shown in Fig. 4(a).

The delay timet plays an important role, as discussed
before in the case ofN=1 [Fig. 2(b)]. Figure 5(b) shows the
t dependence ofss calculated by AMM(the solid curve) and

DS with 1000 trials (the dashed curve) for w=0.5, b
=0.001, andN=10. We note thatss=0.091 fort=0 is rap-
idly decreased with increasingt from zero, while it is almost
constant att.4. Thist dependence ofss resembles that of
gp for N=1 shown in Fig. 2(a).

We have so far fixed the size ofN, which is now changed.
Figure 5(c) shows theN dependence ofss calculated in
AMM (the solid curve) and DS (the dashed curve) for t
=10,w=1.0, andb=0.001. ForN=2, the synchronization of
ss,0.963 is nearly complete. With increasingN, however,
ss is gradually decreased:ss=0.824 and 0.340 forN=10 and
100, respectively.

Model calculations have shown that in linear Langevin
ensembles with appropriate model parameters, an applied
spike induces oscillations with divergent amplitudes. This is
contrast with the nonlinear Langevin ensembles where stable
oscillations with finite amplitudes are possible, as will be
shown in the following Sec. III B.

B. Nonlinear model

Next we consider the nonlinear(NL) model in whichFsxd
andHsxd in Eq. (1) are given by

Fsxd = − ax, s29d

Hsxd = x − bx3 sa ù 0,b . 0d. s30d

The NL model given by Eqs.(1), (29), and (30) with a=0,
b=1, I sedstd=0, andN=1 has been discussed in Ref.[10].
With the use of Eqs.(29) and (30), Eqs.(7)–(10) become

dmstd
dt

= − amstd + wu0st − td + I sedstd, s31d

FIG. 4. (Color online) Time courses of(a) mstd and (b) Sstd of
the L model calculated by AMM(solid curves) and DS (dashed
curves) for variousw with t=10, b=0.001 andN=10: results of
mstd for AMM and DS are indistinguishable. The chain curve at the
bottom of (a) expresses an applied input spike.

FIG. 5. (a) The w dependence ofss, the temporal average of
Sstd, of the L model calculated in AMM(the solid curve) and DS
with Nr =1000 (the dashed curve) for t=10, b=0.001, andN=10.
(b) The t dependence ofss for w=0.5,b=0.001, andN=10 calcu-
lated by AMM (the solid curve) and DS withNr =1000(the dashed
curve). (c) The N dependence ofss for w=1.0, t=10, and b
=0.001 calculated by AMM(the solid curve) and DS(the dashed
curve); Nr =100 for N=50 and 100, andNr =1000 otherwise. Error
bars denote RMS values of DS.
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dgst,td
dt

= − 2agst,td + 2wu1st − tdrst,t − td + b2, s32d

drst,td
dt

= − 2arst,td + 2wu1st − tdrst,t − td +
b2

N
, s33d

drst,t − mtd
dt

= − 2arst,t − mtd + wu1„t − sm+ 1dt…

3r„t,t − sm+ 1dt…+ wu1st − tdrst − t,t − mtd

+
b2

N
Dsmtd, sfor mù 1d, s34d

with

u0std = mstd − bmstd3 − 3bmstdgst,td, s35d

u1std = 1 − 3bmstd2 − 3bgst,td. s36d

For b=0 andI sedstd=0, Eq. (31) has the stationary solution
given by

mp = 0 for w , a s37d

= ±Îw − a

bw
for w . a. s38d

Linearizing Eq.(31) aroundmp, we get the condition for the
stable stationary solution given by

t , tc1 =
cos−1sa/wd
Îsw2 − a2d

for w , a, s39d

,tc2 =
cos−1fa/s3a − 2wdg
Îfs3a − 2wd2 − a2g

for w . 2a. s40d

FIG. 6. Thew–t phase diagram of the nonlinear(NL) model
given by Eqs.(29) and (30) with a=1, b=1/6, andb=0, showing
the nonoscillating(NOSC) and oscillating(OSC) states. Calcula-
tions whose results are depicted in Fig. 7, are performed for sets of
parameters shown by circles. Along the horizontal dotted lines, the
w value is changed for calculations shown in Figs. 8 and 9(a)–9(c)
(see text).

FIG. 7. (Color online) The time course of(a) mstd and(b) Sstd of
the NL model for an applied single spike shown at the bottom frame
in (a), calculated in AMM(solid curves) and DS(dashed curves) for
a=1, b=1/6, w=1.0, b=0.001, andN=10: results ofmstd for
AMM and DS are indistinguishable.

FIG. 8. (Color online) Time courses of(a) mstd and (b) Sstd for 1.2øwø2.3, and(c) mstd and (d) Sstd for −1.2øwø1.0, of the NL
model calculated by AMM(solid curves) and DS(dashed curves) with t=10, b=0.001, andN=10: results ofmstd for AMM and DS are
indistinguishable. Chain curves at bottoms of(a) and (c) express applied input spikes.
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Figure 6 shows the calculatedw–t phase diagram of the NL
model, showing the nonoscillating(NOSC) and oscillating
states(OSC) with a=1 andb=1/6, which are adopted for a
later comparison with the nonlinear model given by Eqs.
(43) and (44) in Sec. IV. When an external spike given by
Eq. (2) is applied to the NOSC state, the state is once excited
and returns to the stationary state after the transient period,
as will be discussed shortly[Figs. 8(a)–8(d)]. On the con-
trary, when a spike is applied to the OSC state, it induces the
autonomous oscillation.

Adopting parameters ofw andt values shown by circles
in Fig. 6, we have made calculations for the NL model by
AMM and DS, whose results ofmstd andSstd are depicted in
Figs. 7(a) and 7(b), respectively, withb=0.001 andN=10,
solid and dashed curves expressing results of AMM and DS,
respectively. Hereafter we show results of AMM6 whose va-
lidity for the NL model will be confirmed later[Fig. 9(b)].
Figure 7(a) shows that with increasingt, mstd shows the
complicated time dependence due to delayed feedbacks. The
time course ofmstd for N=10 is the same as that forN=1
(results not shown). As was discussed in Sec. III A,gst ,td
andrst ,td in the L model are independent of an input signal
I sedstd because they are decoupled frommstd in Eqs.
(20)–(23). It is not the case in the NL model, wheremstd,
gst ,td, andrst ,td are coupled each other in Eqs.(31)–(34),
and Sstd depends onI sedstd. Figure 7(b) shows that, for ex-
ample, in the case oft=0, Sstd,0.95 att&100 is suddenly
decreased toSstd,0 at t=100 by an applied spike, and then
it is gradually increased to the stationary value ofSp,1.0 at
t.1000. This trend is realized in all the cases shown in Fig.
7(b). We note that an agreement ofSstd between AMM and
DS is good fort=0, 5, and 10, but not good fort=1 and 2,
just as in the case of the L model[Fig. 2(a)].

Figures 8(a)–8(d) show the time courses ofmstd andSstd
when thew value is changed along the horizontal dotted line
in Fig. 6, solid and dashed curves denoting results of AMM
and DS, respectively. From comparisons among Figs. 4(a),
4(b), and 8(a)–8(d), we note that foruwuø0.8, time courses
of mstd andSstd of the NL model are similar to those of the
L model. The difference between the L and NL models is,
however, clearly realized in cases ofuwuù1.2. Forw=−1.2,
mstd in the NL model oscillates with the bounded magnitude
[Fig. 8(c)] while mstd in the L model oscillates with divergent
magnitude[Fig. 4(a)] although the oscillating period is the
samesT=22d for L and NL models. In contrast,Sstd in the
NL model oscillates[Fig. 8(d)] while Sstd in the L model
saturates at unity[Fig. 4(b)]. For w=1.2, mstd in the NL
model starting from the stationary state withmp=1.0, is
slightly modified by an input spike applied att=100 with a
small magnitude ofSp=0.024 forSstd, whereasmstd in the L
model shows an unbounded oscillation andSstd saturates at
Sp=1. Figure 8(a) shows that as increasingw above 1.2,mstd
shows a quasi-oscillation triggered by inputs, by whichSstd
is increased at 110& t&130. Forw.2.0, the autonomous
oscillation with a period ofT=22 is induced andSstd is also
oscillating with a period ofT=11.

As discussed above, the oscillation is triggered by an in-
put spike when parameters are appropriate. In order to study
the transition between the NOSC and OSC states in more

detail, we have calculated the quantityso defined by[31]

so =
1

N
o

i

fkxistd2l − kxistdl2g s41d

=mstd2 − mstd2 + gst,td, s42d

which becomes finite in the OSC state but vanishes(or is
small) in the NOSC state, the overline denoting the temporal
average[Eq. (28)].

Figure 9(a) showsso andss calculated with changingw
from 1.6 to 2.4 along the horizontal dotted line in Fig. 6 with
t=10, b=0.001, andN=10, solid and dashed curves denot-
ing results of AMM6 and DS, respectively. The oscillation is
triggered by an input spike whenw exceeds the critical value
of wcs,2.02d. The transition is of the second order sinceso

is continuously increased assw−wcd is increased. We should
note that the peak inss shows thefluctuation-induceden-
hancement atw,wc, which arises from an increase in the
ratio of rst ,td /gst ,td although bothgst ,td and rst ,td are in-
creased. Whenw exceeds about 2.3, the oscillation becomes
irregular, which is expected to be a precursor of the chaotic
state.

FIG. 9. (a) The w dependence ofso andss for 1.6øwø2.4 of
the NL model.(b) The w dependence ofss for 1.8øwø2.6 with
different levelm in AMM m (see text). (c) Thew dependence ofso

andss for −1.4øwø−0.6. Solid and dashed curves in(a) and (c)
express results of AMM6 and DS calculated withsAMM md, b
=0.001, andN=10. Note that the result withm=6 in (b) corre-
sponds to the AMM result ofss in (a). Errors bars expressing RMS
values are not shown for a clarity of figures(see Fig. 10).
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For calculations of the NL model given by Eqs.(29) and
(30), we have adopted AMM6, whose validity is examined in
Fig. 9(b) showingss for 1.8øwø2.6 when the levelm is
changed in AMMm: note that the result ofm=6 in Fig. 9(b)
is nothing but the AMM result ofss in Fig. 9(a). The critical
coupling for the NOSC-OSC transition calculated by
AMM m for m=1–3 is too largecompared to that by DS
swc=2.02d shown in Fig. 9(a). Form=4, we get a reasonable
value ofwc, but the peak value ofss at w=wc is too small.
With furthermore increasing them value, thew-dependence
of ss becomes in better agreement with that of DS. The
optimum value ofm is expected to depend on the model
parameters, the required accuracy and the ability of computer
facility. Making a compromise among these factors, we have
decided to adopt AMM6 in all our calculations. This choice
of m=6 has been confirmed by results of AMM which are in
good agreement with those of DS[Fig. 9(a)].

Figure 9(c) expresses thew dependence ofso andss near
the NOSC-OSC transition for a negativew when thew value
is changed from −1.4 to −0.6 along the horizontal dotted line
in Fig. 6. The oscillation is triggered by an input spike when
w is below the critical value ofwcs,−1.04d. The fluctuation-
induced enhancement is again realized inss calculated by
AMM and DS.

The N-dependence ofss has been studied for variousws
,2d with t=10 andb=0.001, whose results are depicted in
Fig. 10(a). It is noted thatss with w=2.02 is larger than that

with w=2.04 for all N values, just as shown in Fig. 9(a).
With increasingN, ss is gradually decreased for allw values.
Although RMS values ofss in the NOSC state are small,
they become considerable in the OSC states, which is due to
oscillations in Sstd but not due to noises. In contrast, the
N-dependence ofso is very small for the parameters inves-
tigated(results not shown).

Figure 10(b) shows theb dependence ofso and ss for
w=2.0, 2.02, and 2.04 witht=10 andN=10. Forw=2.02,
which is just the critical coupling forb=0.001[Fig. 9(a)], ss
is gradually decreased with increasingb. For w
=2.00s&wcd, ss is little decreased with an increase inb. In
contrast, forw=2.04,ss is first increased with increasingw
and has a broad peak atb,bc wherebc=0.04 in AMM and
0.06 in DS. This broad peak inss may suggest that the OSC
state is suppressed by noises althoughso calculated in DS
remains finite atb.bc, showing no signs for the NOSC-
OSC transition. It may be possible that the emergence of the
oscillation is not well represented byso defined by Eqs.(41)
and (42) in the case of a largeb. The discrepancy between
results of AMM and DS becomes significant with increasing
b, which is due to a limitation of AMM based on the weak-
noise assumption.

It has been shown that when model parameters ofw, t, b,
andN are appropriate, the stable oscillations with finte mag-
nitudes are induced in NL Langevin ensembles. The
fluctuation-induced enhancement is realized in the synchrony
near the second-order transition between the NOSC and OSC
states.

IV. CONCLUSIONS AND DISCUSSIONS

We may adopt a nonlinear Langevin model given by Eq.
(1) with

Fsxd = − ax sa ù 0d, s43d

Hsxd = sinsxd, s44d

which is referred to as the NL’ model. Equations(43) and
(44) were previously employed by Ikeda and Matsumoto[1]
for a study on chaos in time-delayed systems. By using Eqs.
(43) and (44), and the relation given by

Hs2ndstd = s− 1dn sinsxd, s45d

Hs2n+1dstd = s− 1dn cossxd, s46d

we get DEs given by Eqs.(31)–(34) but with

u0std = sin„mst…dexpS−
gst,td

2
D , s47d

u1std = cos„mstd…expS−
gst,td

2
D , s48d

where all contributions fromn=0 to ` in Eqs.(11)–(14) are
included. It is noted that Eq.(30) with b=1/6 is anapproxi-
mate form of Eq.(44) for a smallx. Correspondingly,u0std
and u1std given by Eqs.(35) and (36) are approximate ex-

FIG. 10. (a) The N dependence ofss for t=10 andb=0.001,
and (b) the b dependence ofss for t=10 andN=10 of the NL
model, calculated by AMM(solid curves) and DS(dashed curves)
with w=2.04 (triangles), 2.02 (circles), 2.0 (squares), 1.95 (dia-
monds), and 1.90(inverted triangles). Errors bars expressing RMS
values ofss of DS, are significant in the OSC state because of the
oscillation ofSstd.
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pressions of those given by Eqs.(47) and (48), respectively,
for small mstd andgst ,td.

Figure 11 shows thew dependence ofso and ss of the
NL’ model. The NOSC-OSC transition occurs atwc=2.29
above whichso is continuously increased and wheress has a
peak. Although the induced oscillation is regular for 2.29
øw&2.64, it becomes irregular forw*2.64, which may
lead to the bifurcation and chaos[1]. We note from Figs. 9(a)
and 11 that thew dependence of the NL model given by Eqs.
(29) and (30) is similar to that of the NL’ model given by
Eqs. (43) and (44) although the critical coupling for the
NOSC-OSC is different between the two models. Thew–t
phase diagram for the NL’ Langevin model is almost the
same as that for NL Langevin ensembles shown in Fig. 6.
Recently the phase diagram has been experimentally ob-
tained for a coupledpair of the plasmodium of the slime
mold, physarum polycephalum, where the coupling strength
and delay time are systematically controlled[32]. The ob-
served phase diagram is not dissimilar to ourw–t phase
diagrams for NL and NL’ Langevin models as far as unen-
trained and in-phase oscillating states are concerned.

Quite recently, Huber and Tsimring(HT) [17] have dis-
cussed an alternative nonlinear Langevin ensembles given by
Eq. (1) with

Fsxd = x − x3, s49d

Hsxd = x, s50d

for I sedstd=0, which expresses interconnected bistable sys-
tems with delays[14]. By using DSs and analytical methods
based on the Gaussian and dichotomous approximations, HT
have discussed the coherence resonance and multistability of
the system. When we apply our approximation to this non-
linear model, Eqs.(7)–(10) become

dmstd
dt

= mstd − mstd3 − 3mstdgst,td + wmst − td + I sedstd,

s51d

dgst,td
dt

= 2f1 − 3mstd2 − 3gst,tdggst,td + 2wrst,t − td + b2,

s52d

drst,td
dt

= 2f1 − 3mstd2 − 3gst,tdgrst,td + 2wrst,t − td +
b2

N
,

s53d

drst,t − mtd
dt

= fg1std + g1st − mtdgrst,t − mtd

+ wrst,t − „m+ 1dt…+ wrst − t,t − mtd

+
b2

N
Dsmtd sfor mù 1d, s54d

whereg1std=1−3mstd2−3gst ,td. In their Gaussian approxi-
mation, HT have employed Eqs.(51) and (52) with rst ,t
−td=0, discarding Eqs.(53) and (54). It has been claimed
that the Gaussian approximation is not adequate near the
transition point between the ordered and disordered states,
although a dichotomous theory yields a fairly good descrip-
tion. This might be due to a neglect of the higher-order con-
tributions in Eqs.(52)–(54), which are expected to play im-
portant roles, in particular, near the transition point, as our
calculations have shown[Fig. 9(b) and Fig. 5(b) of Ref. [26]
for FN neuron models].

In summary, we have proposed a semianalytical approach
for a study of dynamics of stochastic ensembles described by
linear and nonliner Langevin models with delays. Advan-
tages of our method are(a) the synchronization in ensembles
may be discussed by taking into account correlations of local
and global variables,(b) the recursive DEs terminated at fi-
nite ms,6d yield fairly good results compared to those of
DSs, and(c) our method is free from the magnitude of time
delays though the noise intensity is assumed to be weak,
which is complementary to SDA[9]. The proposed method is
expected to be useful not only to Langevin ensembles but
also to more general stochastic ensembles with delays. Al-
though our method is applicable to the system with an arbi-
trary size ofN, it is better applied to larger system because of
its mean-field nature. It should be noted that the number of
DEs to be solved forN-unit stochastic Langevin model is
NNr in DS with Nr trials, while it is sm+3d in AMM m. The
ratio between the two numbers becomesNNr / sm+3d
,1000, for example, forN=Nr =100 andm=6. Actually this
reflects on the ratio of the speed for numerical computations
by using the two methods. Taking these advantages of our
method, we have applied it to ensembles described by the FN
neuron model with delayed couplings to study their dynam-
ics and synchronization, which are reported in a following
paper[26].
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APPENDIX A: DERIVATION OF EQS. (7)–(10)

Assuming that the noise intensityb is small, we express
Eq. (1) in a Taylor expansion ofdxi as

FIG. 11. Thew dependence ofso andss of the NL’ model given
by Eqs.(43) and (44), calculated by AMM(solid curves) and DS
(dashed curves) with t=10, b=0.001, andN=10 (see text). Error
bars expressing RMS values are not shown for a clarity of the
figure.

AUGMENTED MOMENT METHOD FOR… . I. … PHYSICAL REVIEW E 70, 021911(2004)

021911-9



dxistd
dt

= o
,=0

`
Fs,dstd

,!
dxistd, +

w

No
j
o
,=0

`
Hs,dst − td

,!
dxjst − td,

+ jistd + I sedstd, sA1d

where Fs,dstd=Fs,d(mstd) and Hs,dstd=Hs,d(mstd). Equations
(3), (4), and(A1) yield DE for means ofmstd as

dmstd
dt

=
1

N
o

i
o
,=0

`
Fs,dstd

,!
kdxistd,l

+
w

N2o
i

o
j

o
,=0

`
Hs,dst − td

,!
kdxjst − td,l + I sedstd.

sA2d

When we adopt the Gaussian decoupling approximation, av-
erages higher than the second-order moments in Eq.(A2)
may be expressed in terms of the second-order moments
given by

kdx1, . . . ,dx,l = o
all pairings

Pkmkdxkdxml for even,

=0 for odd,,

sA3d

where the summation is performed for alls,−1ds,
−3d¯3·1 combinations. With the use of the Gaussian de-
coupling approximation given by Eq.(A3), Eq. (A2) be-
comes

dmstd
dt

=
1

N
o

i
o
n=0

`
Fs2ndstd
s2nd!

B2nkdxistd2ln

+
w

N2o
i

o
j

o
n=0

`
Hs2ndst − td

s2nd!
B2nkdxjst − td2ln + I sedstd,

sA4d

where B2n=s2n−1ds2n−3d¯3·1. Adopting the mean-field
approximation given by

kdxistd2ln . gst,tdn−1kdxistd2l, sA5d

we get

dmstd
dt

= o
n=0

`
Fs2ndstd

n!
Sgst,td

2
Dn

+ wo
n=0

`
Hs2ndst − td

n!
Sgst − t,t − td

2
Dn

+ I sedstd,

sA6d

which yields Eqs.(7), (11), and(13).

From Eqs.(A1) and (A4), we gt DEs forddxistd /dt as

ddxistd
dt

=
dxIstd

dt
−

dmstd
dt

sA7d

=o
n=0

`

Fs2n+1dstd
dxistd2n+1

s2n + 1d!
+ o

n=0

`

Fs2ndstdSdxistd2n

s2nd!
−

gst,tdn

2nn!
D

+
w

N
o

j
o
n=0

`

Hs2n+1dst − td
dxjst − td2n+1

s2n + 1d!
+

w

N
o

j
o
n=0

`

Hs2ndst − td

3Sdxjst − td2n

s2nd!
−

gst − t,t − tdn

2nn!
D + jistd. sA8d

By using Eqs.(5), (A3), and(A8), we get DEs fordgst ,td /dt
as

dgst,td
dt

=
2

N
o

i
Kdxistd

ddxistd
dt

L sA9d

=
2

N
o

j
o
n=0

`
F2n+1std
s2n + 1d!

kdxistd2n+2l

+
2w

N2 o
i

o
j

o
n=0

`
H2n+1st − td

s2n + 1d!
kdxistddxjst − td2n+1l

+
2

N
o

i

kdxistdjistdl

=
2

N
o

i
o
n=0

`
F2n+1std
s2n + 1d!

B2n+2kdxistd2ln+1

+
2w

N2 o
i

o
j

o
n=0

`
H2n+1st − td

s2n + 1d!
B2n+2kdxistddxjst − tdl

3kdxjst − td2ln + b2. sA10d

With the use of the mean-field approximation given by Eq.
(A5), Eq. (A10) reduces to

dgst,td
dt

= 2gst,tdo
n=0

`
Fs2n+1dstd

n!
Sgst,td

2
Dn

+ 2wrst,t − td

3o
n=0

`
Hs2n+1dst − td

n!
Sgst − t,t − td

2
Dn

+ b2,

sA11d

leading to Eqs.(8), (12), and(14). Calculations ofdrst ,td /dt
anddrst ,t−mtd /dt are similarly performed by using the re-
lation:

drst,t − mtd
dt

=
1

N2o
i

o
j
Kdxistd

dxjst − mtd
dt

+
dxistd

dt
xjst − mtdL . sA12d

In the process of calculatingdrst ,t−mtd /dt, we get new
correlation functions given by
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Sst,t − mtd =
1

N
o

i

kdxistdjist − mtdl, sA13d

Sst − mt,td =
1

N
o

i

kdxist − mtdjistdl. sA14d

By using the method of steps in Ref.[13], we get

Sst,t − mtd = Sst − mt,td = Sb2

2
DDsmtd, sA15d

which leads to Eq.(10).

APPENDIX B: THE SMALL-DELAY APPROXIMATION

We apply the small-delay approximation(SDA) first pro-
posed in Ref.[9] to our model given by Eqs.(1) and (2).
When t is small, we may expand Eq.(1) for N=1 asxst
−td,xstd−tdxstd /dt to get

dxstd
dt

. F„xstd… + wSH„xstd… − tH8„xstd…
dxstd

dt
D

+ bhstd + I sedstd. sB1d

Using Eq.(B1), we get DEs formstd andgst ,td given by

dmstd
dt

= f1 − wth1stdgfg0std + wu0std + I sedstdg, sB2d

dgst,td
dt

= 2f1 − wth1stdgfg1std + wu1stdggst,td

+ f1 − wth1stdg2b2, sB3d

whereh1(td=H8smstd). For the L model given by Eqs.(1),
(2), (18), and(19), Eqs.(B2) and (B3) become

dmstd
dt

= s1 − wtdfs− a + wdmstd + I sedstdg, sB4d

] gst,td
] t

= 2s1 − wtds− a + wdgst,td + s1 − wtd2b2.

sB5d

The t dependence of the stationary solution ofgp is shown
by the dotted curve in Fig. 2(b). The time course ofmstd is
plotted by dotted curves in Fig. 3(a).
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