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Augmented moment method for stochastic ensembles with delayed couplings.
I. Langevin model
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By employing a semianalytical dynamical mean-field approximation theory previously proposed by the
author[H. Hasegawa, Phys. Rev. &7, 041903(2003], we have developed an augmented moment method
(AMM) in order to discuss dynamics of &tunit ensemble described by Langevin equations with delays. In
an AMM, original N-dimensionalstochasticdelay differential equationéSDDES9 are transformed to infinite-
dimensionaldeterministicDEs for means and correlations of local as well as global variables. Infinite-order
DEs arising from the non-Markovian property of SDDE, are terminated at the finite fewelthe levelm
AMM (AMM m), which yields(3+m)-dimensional deterministic DEs. Model calculations have been made for
linear and nonlinear Langevin models. The stationary solution of AMM for the linear Langevin model with
N=1 is nicely compared to the exact result. In the nonlinear Langevin ensemble, the synchronization is shown
to be enhanced near the transition point between the oscillating and nonoscillating states. Results calculated by
AMMBG6 are in good agreement with those obtained by direct simulations.

DOI: 10.1103/PhysRevE.70.021911 PACS nun)er87.10+e, 84.35+i, 05.45—a, 07.05.Mh

[. INTRODUCTION subject to various kinds of noises, receives spikes from hun-
The time delay plavs an important role in manv svstem dreds of other neurons through dendrites with a transmission
y play P y Sy Sdelay and generates spikes propagating along axons. Theo-

such as optical devicgd] and physiological2] and biologi-  yatica) study on such coupled, stochastic systems has been
cal [3] systems. The effect of time delays has been theoretiz, ;e by using direct simulatiori®Ss [15-17 and analyti-

cally studied by using the time-delay differential equations.,| methods like FPEL8]. Since the time to simulate such
(DEy9). Its exposed behavior includes the multistability andSystems by conventional methods growsN&swith N, the
the bifurcation leading to chaos. It is well known that noisegj;e of the ‘ensemble, it is rather difficult to simulate systems
also plays important roles in these systems, and its effeCtg;i, the realistic size oN~100-1000. Although FPE is a
have been thoroughly investigated with the use of StOChaSt'ﬁowerful method in dealing with the stochastic DE, a simple
DEs. One of its representative phenomena is the StOChaSt&CppIication of FPE to SDDE fails because of the non-
resonancé4], in which the signal-to-noise ratio is enhanced y1arkovian property of SDDE: an evaluation of the probabil-
for subthreshold signals. _ _ ity density at the time requires prior knowledge of the con-
In real systems, both noises and time delays coexist, angiional probability density between times ofand t—r, =
the combined effect may be described by stochastic delaMeing the delay time.
differential equationSDDE). For instance, SDDEs are used Quite recently the present authgir9,20 proposed a dy-
in optics [5] and physiology[6] to model noise-driven sys- namical mean-field approximatigibMA) as a semianalyti-
tems exhibiting delay feedback. In recent years, there hasy| method dealing with large-scale ensembles subject to
been a growing interest in combined effects of noise anq,yises extending the moment methf2L—23. DMA has
delay. The theory for SDDE remains much less studied anfleen first applied to al-unit ensemble described by the
has been a subject of several recent papérd4), in which ity gh-NagumaFN) neuron model without time delays
the stability condition for the equilibrium solution of linear [24], for which original N-dimensional stochastic DEs are
delay Langevin equation has been studied. Its stationary sqzansformed to eight-dimensional deterministic DEs for mo-
lution is investigated by using the step by step metfiod  yents of local and global variablgd9]. In a subsequent
and the moment methofB]. The Fokker-Planck equation ,aner720), DMA is applied to anN-unit general neuron en-
(FPB method is applied to SDDE in the limit of a small gemple. ~ each of which is described by coupled
delay[9]. These studies have been confined to the stationar¥_gimensional DEs transformingN-dimensional DEs to
solution of SDDE. More interesting is, however, expected tONeq-dimensionaI DEs wherll,,=K(K+2). In the case of the

be its dynamics in a stochastic system with a large timeHodgkin-Huxley(HH) model with K=4 [25], we getN
’ eq

delay. : €24. The spiking-time precision and the synchronization in
7 : N and HH neuron ensembles have been studied as functions
of many eIement;, eaph of Wh'.Ch IS de;cnbed by SDDE. Aof the noise intensity, the coupling strength and the ensemble
typical example is a living brain, in which a small cluster size. The feasibility of DMA has been demonstrated in Refs.
contains thousands of similar neurons. Each neuron which iﬁQ] and[20].
The purpose of the present paper is to apply DMA to
Langevin ensembles with delays, which are expected to be
*Email address: hasegawa@u-gakugei.ac.jp good models representing not only interconnected neural net-
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works but also social and technological ones. When DMA isshown in Sec. 111,0(t) denoting the Heaviside functior
applied to ensembles described by linear and nonlineathe magnitudet;, the input time, and’,, the spike width.

Langevin equations with delays, the origingddimensional In DMA [19], the global variable is given by
stochastic DEs are transformed to the infinite-dimensional

deterministic DEs for means and correlation functions of lo- X(t) = 12 (1), (3)
cal and global variables. Infinite-order recursive DEs arising N

from the non-Markovian property of SDDE, are terminated
at the finite levelm in our approximate method, which is
hereafter referred to as thaugmented moment method by
(AMM). We may study dynamics and synchronization of lin- w(t) = (X)), (4)
ear and nonlinear Langevin ensembles with delayed cou-
plings, and examine the validity of AMM whose results are 1
compared to results of DSs. In particular, for the linear 'Y(tat’)zﬁz<®(i(t)é)(i(t’)>v 5
Langevin model witiN=1, a comparison is possible with the ‘
exact stationary solutiofi/].

The paper is organized as follows. In Sec. I, we describe p(t,t") = (SX(1) oX(t")), (6)
the adopted model and method to derive the infinite-using Sx () =x(t) = () and SX(t)=X(1) - u(b).

dimensional deterministic DEs from the original | qeriving equations of motion of means and variances,
N-dimensional stochastic DEs. Infinite-order recursive DESye have assumed that the noise intensity is weak and that the
are terminated at the finite leven in the levelm AMM o0 yariables obey the Gaussian distributions around their
(AMM m). Model numerical calculations for the linear means, as in Refs[19,2q. Numerical simulations have
Langevin model are reported in Sec. Ill A, where calculatedsyq\n that for weak noises, the distribution of the state vari-
results of AMM6 forN=1 are nicely compared to exact so- gpje of an active rotator model nearly obeys the Gaussian
lutions available for the stationary stafé]. Our AMM is  gistribution, although for strong noises, its distribution devi-
compared also to the small-delay approximati@®DA) [9]  ates from the Gaussiai23]. Similar behavior has been re-
which is valid for a very small delay. In Sec. Il B, we ported also in FN22,23 and HH neuron modelg29,30.
present model calculations for the nonlinear Langevin model  after some manipulations, we get DEs faxt), y(t,1),

in which the stable oscillation is induced by an applied spikey 4 o(t,t") given by (for details see Appendix A

for an appreciable delay. The synchronization in the en-

semble is investigated. It is shown that results of AMMG are du(t) _
in good agreement with those of DSs. The final Sec. IV is dt
devoted to conclusions and discussions. In a following paper

[26], our AMM has been applied to ensembles described by dy(t,t)

the noisy FN neuron model with delayed couplings. — = =200yt + 2wyt - Dp(tt— 1) + 7, (8)

with which we define means and correlation functions given

Go(t) + Wip(t = ) +1°(1), (7

dt

Il. ENSEMBLES DESCRIBED BY THE LANGEVIN dp(t,t) Bz

MODEL: BASIC FORMULATION s 20:(Dp(t,1) + 2wuy(t = p(t,t - 7) + N 9

Dynamics of a Lanvegin ensemble with delayed cou-
lings is assumed to be described b dp(t,t=m7)
Pind y L 2 gy + gyt - mn)Jp(t,t - mo)
IO _ e + IS Hx(t- 7)) + &(1) + 19t “
dt - (Xi( )) N j (Xj( T)) §|() (), +WU1(t—(m+ 1)T)p(t,t—(m+ 1)7_)
2
(i=1toN) 1) +wu(t-7pt-7t-mr) + %A(mr),

with (form=1) (10

19(t) = AB(t ~ i) O (tiy + Ty = 1). (2 with
HereF(x) andH(x) are functions ok, whose explicit forms * FE) [yt )\"
will be shown later[Egs. (18), (19), (29), (30), (43), and Q)= > - (T) , (11
(44)]. We have assumed uniform all-to-all couplings vef =0 "
and time delays of. The former assumption has been widely .
employed in many theoretical studies. The latter assumption _ FC™O() [ (L, 1) \"
may be justified in certain neural networ{27]. White 9:(t) = = nl 2 ) (12)
noises of &(t) are given by (&(1)=0 and (&()§(t") "
:,6’25”- S(t—t’) with the noise intensity of8 [28]. An applied = (o) N
input of 1¥(t) given by Eq.(2) triggers oscillations in en- Ug(t) = > H (t)(M) , (13)
sembles when model parameters are appropriate, as will be no NI 2
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FIG. 2. (a) The stationary solution of(t,t), ¥, of the linear(L)

whereA(x)=1 for x=0 and 0 otherwise. Equatioti)—10) model given by Eqs(18) and (19) calculated in AMM m with

show that an equation of motion @ft,t—7) includes new changing the levem (solid curve$ and in the exact calculation
s . dashed linesfor various with a=1, w=0.5, 3=0.001, andN=1.

terms of p(t—7,t—7) and p(t,t—27), which arise from the ( X

non-Markovian property of SDDE. The recursive structure ofgb) Tge ’ dependdence of '? AlMMG (r:hedsmr']d é:urvq; :DA (_thle

DEs for p(t,t) is schematically expressed in Fig. 1, where otted curvg: and exact calculationthe dashed curyefor a=1,

i w=0.5,8=0.001, and\=1. (c) Thew dependence of* for various
arrows express the mutual dependene;t) depends on iy AMM6 (solid curves and exact calculationedashed curves

p(t,t=7), and p(t,t-7) depends orp(t,t-27) and p(t-7,t  for 8=0.001 andN=1. Results are multiplied by a factor of 8,0
-7), and so on. Then DMA transforms the original and those of=5, 2, 1, and 0 in@) and(c) are successively shifted
N-dimensional SDDEs given by Eq$l) and (2) to the  upwards by 1.

infinite-dimensional deterministic DEs given by Egs.

(1—10). Ill. MODEL CALCULATIONS
In actual numerical calculations, we will adopt the level- _
m approximation(AMM m) in which DEs are terminated at A. Linear model
the finite levelm: We first consider the lineglL) model given by
p(t,t—(m+1)7) = p(t,t —m7). (15 F(x=-ax (a=0), (18)
As will be shown later in model calculations with changing
m, the calculated result converges at a rather smdlFigs. H(x) =x. (19

2(a) and qb)]. - i )
We note that the noise contribution# in Eq. (8) and it The stability of the stationary solution of Eq4), (18), and
is B2/N in Eq. (9). It is easy to get (19) with N=1 and1®(t)=0 was discussed in Refg/-13,
in particular, with the use of the moment method by Mackey

_ Y > and NechaevgB]. When Eqs(18) and(19) are adopted, Eqgs.
p(t,t) = N for w/B=— 0, (16) (7)~(10) become
dpu(t
=y(t,t) for pAw — 0. (17) % = —au(t) +wut- 7 +191), (20)
Equation(16) is consistent with the central-limit theorem.
We will show later that with varying model parameters, the dy(t,t)

ratio of p(t,t)/ y(t,t) is varied, which leads to a change in the = - 2ay(t,t) + 2wp(t,t — 1) + B2, (21
synchronization of ensembl¢Eq. (27)]. dt

DSs have been performed for Eq4) and (2) by using ,
the fourth-order Runge-Kutta method with a time step of dp(t,t) B
0.01. Initial values of variables &k (-7,0] arex;(t)=x" for dat 2ap(L,t) + 2wp(t,t—7) + N’ (22)
i=1 to N, wherex® is the stationary solution fo8=0. The
trial number of DSs to be reported in the next Sec. Il is

dp(t,t—-m7) _

N;=100 otherwise noticed. AMM calculations have been ————— =~ 2ap(t,t—m7) + wp(t,t - (M+1)7)
performed for Eqs(7)—(10) with Eq. (15) by using also the dt

fourth-order Runge-Kutta method with a time step of 0.01. 2

Initial values areu(t)=x" and (t,t)=0 atte[-7,0], and +wp(t - r,t—mr)+(—>A(mr),
p(t,t")=0 att e[-7,0] andt’ e[—7,0](t=t"). All calculated 2

quantities are dimensionless. (form=1) (23)
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becauseyy(t) =—au(t), g:(t)=-a, up(t)=u(t) anduy(t)=1in SIS Ty —
Egs. (11)«(14). [ ﬂ =T R R o
For 8=0 and1®(t)=0, Eq.(20) has the stationary solu- I ﬁ L T
tion of ©*=0. Linearizingu(t) aroundu*, we get the condi- 3 4- '
. . . . | J >q ______ = =
tion for the stationary solution given by 5 9 [L 2 \DE’« AL 5 ]
cos Ya/w 5 i
< rcz—rz( 2), (24 1 {L L ORI
w—a [ 1 10
which is just the same as tlid=1 cas€[8]. TN=lp ————
-—00 200 300 T00 200" 300
1. N=1 case (@) t (b) t
First we discuss model calculations fi=1, for which FIG. 3. (Color onling The time course ofa) u(t) and(b) y(t,t)

the exact solution of its stationary state is available. Fronof the L model for an applied single spike shown at the bottom
Egs.(21) and (22), we getp(t,t')=7(t,t’) in the case oN  frame in (a), calculated in AMM((solid curve$, the small-delay
=1. Solid curves in Fig. @) expressy", the stationary value approximation(SDA; dotted curvesand direct simulationgDS;

of y(t,t), when the levelm in AMMm is varied fora=1, dashed curvgswith a=1, w=0.5, 8=0.001, andN=1: results of

w=0.5, andB=0.001, whereas dashed curves denote the ex«(t) for AMM and DS are indistinguishable, and results of SDA are
act result given by7] shown only forr<2 (see the text

*_( w sinh(rd) - d
~ \ 2d[w cosHd) - a]

where d=\a?-w?. Equation(25) yields 1¢y*=1.0, 0.724,
0.635, 0.581, and 0.577 fer=0, 1, 2, 5, and 10, respectively.
Figure 2a) shows that forr=0, the result of AMM agrees
with the exact one fom= 0. In the case of=1, the result of
AMM is larger than the exact one fon=0, but the former is
smaller than the latter fom=1. This is the case also far

=2. In contrast, in cases 65 and 10, the results of AMM ; q h is ind q p
are in good agreement with the exact onesrfor 1. It is oM Y61 andp(t,0), then»(t,t) is independent of an ex-

surprising that the results of AMM converge at a smallt€rmnal input| (). Figure 3b) shows that time courses of
m(~1). ¥(t,t) of AMM and DS are almost identical for=0. For 7

Solid and dashed curves in Fig(t® show ther depen- =1, the result of the AMM is underestimated compared to
dence ofy* of AMM6 and the exact result, respectively that of DS as discussed before. However, an agreement of
(hereafter we show results in AMM6The result of AMM is ~ the result of AMM with that of DS becomes better far
in a fairly good agreement with the exact one for4. Itis =4 Results ofy(t,t) of DS at larget (>100) are in good
interesting to make a comparison with results calculated bgreement with the exact stationary solutiomofshown in
the small-delay approximatioSDA) initiated in Ref.[9],  Fig. Z0C).
some details of SDA being given in Appendix B. The dotted
curve in Fig. Z2b) expressesy* calculated in SDA forw 2.N>1 case

=0.5,8=0.001, andN=1. Although the result of SDA agrees  \ve will discuss dynamics, in particular the synchroniza-

with the exact one at very smatl(~0), it shows a signifi-  tjon, of ensembles fak> 1. In order to monitor the synchro-
cant deviation from the exact onet 2, wherey” becomes  njzation, we consider the quantity given [49]

negative violating its positive definiteness.

Solid and dashed curves in Figcexpress thev depen- 1
dence ofy* of AMM and exact ones, respectively, for vari- Rt = @2 D6 =x (017 = 2LAt,b) - p(t,1)].  (26)
ous 7 values withf=0.001 andN=1. We note that an agree- '
ment between AMM and exact results is good except fofwhen all neurons are in the completely synchronous states,
w>0.6 with 7=1-2 and forw<-0.8 with 7=2-10. From e getx;(t)=X(t) for all i and therR(t)=0. In contrast, in the
the results shown in Figs(&-2(c), we may say that AMM asynchronous states, we gB{t)=2(1-1/N)y(t,t)=R(t)

is a good approximation for a large(>4) and a smalj. because(t,t)=(t,t)/N [Eq. (16)]. The synchronization ra-
The response of the Langevin mod&l=1) will be dis- 4, S(t) is defined by[19]

cussed to an applied spike 8P(t) given by Eq.(2) with

A(=0.5), t,(=100, andT,,(=10). Figures 8a) and 3b) show R(t) Np(t,t)/y(t,t) - 1
the time courses of(t) and y(t,t)(=p(t,t)), respectively, S =1- Ro(t) - ( N-1 >
with a set of parameters @f=1, w=0.5, =0.001, andN

=1, an input spike of®(t) being shown at the bottom of Fig. which becomes 10) for completely synchronou@synchro-
3(a). Note that results calculalted for different parameters ar@ous states. The synchronys of the ensemble is defined by

)/3’2 for \w|<a, (25 vertically shif;ed for c]arit_y in Fig. Jalso in Figs. 4, 7 and

8). When an input spike is applied &t 100, state variables
of x(t) are randomized because independent noises have
been added since=0. Solid and dashed curves in Figag
which denote results of AMM and DSs, respectively, are
practically identical. The dotted curve expressipgt) of
SDA is in fairly good agreement with that of DSs for 1,
but the former completely disagrees with the latter for
= 2. We should note in Eq$20)—23) that u(t) is decoupled

(27)
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FIG. 4. (Color online Time courses ofa) u(t) and(b) St) of © og10(N)

the L model calculated by AMMsolid curve$ and DS (dashed FIG. 5. (8) The w dependence of, the temporal average of

curvey for variousw with 7=10, 8=0.001 andN=10: results of g4 of the L model calculated in AMMthe solid curvg and DS
(1) for AMM and DS are indistinguishable. The chain curve at the, i, N, =1000(the dashed curyeor r=10, 3=0.001, andN=10.

bottom of(a) expresses an applied input spike. (b) The 7 dependence af for w=0.5, 3=0.001, andN=10 calcu-
lated by AMM (the solid curvg and DS withN,=1000(the dashed
_ t curve. (c) The N dependence ofrg for w=1.0, 7=10, and 3
gs=S(t) = (t . )f dt gt), (28)  =0.001 calculated by AMMthe solid curvg and DS(the dashed
2 My curve); N,=100 forN=50 and 100, and\,=1000 otherwise. Error

where the overline denotes the temporal average betwedl's denote RMS values of DS.
timest; (=2000 andt, (=3000.

Figures 4a) and 4b) show the time course of(t) and DS with 1000 trials (the dashed curyefor w=0.5, g
S(t), respectively, for variousv with 7=10, 8=0.001, and =0.001, andN=10. We note that-s=0.091 for7=0 is rap-
N=10, solid and dashed curves denoting results of AMM anddly decreased with increasingfrom zero, while it is almost
DS, respectively. Fow=0, u(t) behaves as a simple relax- constant at>4. This 7 dependence of; resembles that of
ation process with the relaxation time af=1/a=1, while ¥ for N=1 shown in Fig. 2a). o
S(t) is vanishing. When a small, positive coupling wf ~We have so far fixed the size b which is now changed.
=0.4 is introducedg(t) shows the stairlike structure because Figure ¢) shows theN dependence obr calculated in
of the positive delayed feedback. The synchronization rati¢*MM (the solid curvg and DS(the dashed curyefqr 4
S(t) for w=0.4 shows a gradual development as increasing — +0:W=1.0, and5=0.001. FoN=2, the synchronization of
but the magnitude of its averaged valuefis very small 0570'963 is nearly complete. With increasig however,
(~0.015. Whenw is more increased tw=0.8, the effective  9s'S graduall_y decreased=0.824 and 0.340 fd=10 and
relaxation time foru(t) to return to the initial zero value 100, respectlvely._ - .
becomes larger and, becomes also larger. For=1.0, the Model calc.ulatlons ha_ve shown that in linear Langevin

ffective relaxation tsime becomes infinity apdt) remains ensembles with appropriate model parameters, an applied
:t the finite value ofu(t)=0.455 Forw>1y the divergence spike induces oscillations with divergent amplitudes. This is

contrast with the nonlinear Langevin ensembles where stable
in w(t) is triggered by an input spike argft) tends to a fully g

X oscillations with finite amplitudes are possible, as will be
synchronized state ofs=1. On the contrary, for a small ghown in the following Sec. Il B.

negative coupling ofw=-0.4, u(t) shows an ostensibly
quasi-oscillating state because of negative delayed feedback.
With increasing magnitude of negative the term showing
this quasi-oscillation becomes longer. Far<-1.2, u(t) Next we consider the nonline@XL) model in whichF(x)
shows a divergent oscillation arff(t) tends to saturate at andH(x) in Eq. (1) are given by
unity for t>250.

Thew dependence af,, which is the temporal average of F(x) = - ax, (29)
S(t), is depicted in Fig. &), where solid and dashed curves
show results of AMM and DS with 1000 trials, respectively:
error bars showing the root-mean-squéRdS) value of DS HX)=x-bx’ (a=0b>0). (30)
are within the radius of circles. Although is very small for
|w| < 0.9, it is suddenly increased mg approaches the unity,
where the divergence of the autonomous oscillation is in

B. Nonlinear model

The NL model given by Eqq.l), (29), and(30) with a=0,
b=1, 19(t)=0, andN=1 has been discussed in R¢10].

duced as shown in Fig.(&. With the use of Eqs(29) and(30), Egs.(7)—(10) become
The delay timer plays an important role, as discussed q

before in the case dfi=1 [Fig. 2b)]. Figure 5k_)) shows the du(® = —au(t) + Wit — 7 + 19(1), (31

7 dependence af calculated by AMM(the solid curvgand dt
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~ FIG. 6. Thew—r phase diagram of the nonline@iL) model  the NL model for an applied single spike shown at the bottom frame
given by Egs(29) and(30) with a=1, b=1/6, andB=0, showing (a), calculated in AMM(solid curve$ and DS(dashed curvedor
the nonoscillatingNOSQ and oscillating(OSQ states. Calcula-  3=1 p=1/6, w=1.0, $=0.001, andN=10: results ofu(t) for
tions whose results are depicted in Fig. 7, are performed for sets g{pmm and DS are indistinguishable.
parameters shown by circles. Along the horizontal dotted lines, the
w value is changed for calculations shown in Figs. 8 afal-®(c) 3
(see text Ug(t) = ae(t) = bae(t)® = 3bu(t) ¢ t,1), (39)

—_1 _ 2 _
. Uy (1) = 1 - Bou(t)? - 3by(t,1). (36)

= - 2ay(t,t) + 2wy (t— Dp(t,t— 0 + B2, (32

dt For =0 andl®(t)=0, Eq.(31) has the stationary solution
given by
=0 forw<a 3
do(t,t) I3 # 57
Tat =-2ap(t,t) + 2wu(t - Dp(t,t - 7) + N (33
w-a
=t for w> a. (38)
bw
dp(t,t—m) = - 2ap(t,t — m7) +wuy(t - (m+ 1)7) Linearizing Eq.(31) aroundw™®, we get the condition for the
dt stable stationary solution given by
Xp(t,t=(m+ 1) 7)+wuy(t— 7)p(t - 7,t —m7) 1
cos “(a/w)
,32 T< T = T forw<a, (39
+JAm7),  (form=1), (34) V(w? - a?)
<1
cos [a/(3a- 2w
. <Tep= [a/( )] for w> 2a. (40
with V[(3a-2w)? - a?]
8- . q
B e B T
6&["\"‘"\ 0.8
04n
" . 0.0q 0.4
wn

4 2.0 " — =3 -0.4[\r 4. 00

i i 18 zﬂv\,\,\,w_ 0.4

s 16 ﬂf\ﬂf‘l\/.\/\/.\/.\/.\ | 08

M -1.2,
; 2~ o—21! UUUUUUH JEE——
o= NL model =10 _| - a2 1
A s B T00-20"300 100200 300
0 100 200 300 100 200 300
(@) t (b) t © @

FIG. 8. (Color onling Time courses ofa) w(t) and(b) S(t) for 1.2<w=<2.3, and(c) w(t) and(d) S(t) for —1.2<w=1.0, of the NL
model calculated by AMMsolid curve$ and DS(dashed curveswith 7=10, 8=0.001, andN=10: results ofu(t) for AMM and DS are
indistinguishable. Chain curves at bottoms(af and(c) express applied input spikes.
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Figure 6 shows the calculated-r phase diagram of the NL L Tt T
model, showing the nonoscillatindOSCO and oscillating
states(OSO with a=1 andb=1/6, which are adopted for a
later comparison with the nonlinear model given by Egs.
(43) and (44) in Sec. IV. When an external spike given by
Eq.(2) is applied to the NOSC state, the state is once excited
and returns to the stationary state after the transient period,
as will be discussed shortlyFigs. 8a)—8(d)]. On the con-
trary, when a spike is applied to the OSC state, it induces the
autonomous oscillation. A S e —

Adopting parameters off and r values shown by circles 1
in Fig. 6, we have made calculations for the NL model by
AMM and DS, whose results gi(t) andS(t) are depicted in g [
Figs. 1a) and qb), respectively, with3=0.001 andN=10, 0.5

solid and dashed curves expressing results of AMM and DS,
respectively. Hereafter we show results of AMM6 whose va-
lidity for the NL model will be confirmed latefFig. Ab)].
Figure {a) shows that with increasing, u(t) shows the
complicated time dependence due to delayed feedbacks. The
time course ofu(t) for N=10 is the same as that fdt=1
(results not shown As was discussed in Sec. Il Ay(t,t)
andp(t,t) in the L model are independent of an input signal
1®(t) because they are decoupled from(t) in Egs.
(20)«23). It is not the case in the NL model, whejgt),
y(t,t), and p(t,t) are coupled each other in Eq81)—(34),
and S(t) depends orl(®(t). Figure Tb) shows that, for ex-
ample, in the case of=0, S(t) ~0.95 att=<100 is suddenly
decreased t&(t) ~0 att=100 by an applied spike, and then  F|G. 9. (a) Thew dependence of, and o, for 1.6<w<=2.4 of
it is gradually increased to the stationary valuesof-1.0 at  the NL model.(b) The w dependence o for 1.8<w=2.6 with
t>1000. This trend is realized in all the cases shown in Figdifferent levelmin AMM m (see text (c) Thew dependence of,
7(b). We note that an agreement &ft) between AMM and  and oy for -1.4<w<=-0.6. Solid and dashed curves (@ and(c)
DS is good forr=0, 5, and 10, but not good far=1 and 2,  express results of AMM6 and DS calculated withMMm), B
just as in the case of the L modgig. 2(a)]. =0.001, andN=10. Note that the result wittm=6 in (b) corre-

Figures 8a)-8(d) show the time courses @f(t) and S(t) sponds to the AMM result o5 in (). Errors bars expressing RMS
when thew value is changed along the horizontal dotted lineValues are not shown for a clarity of figuresee Fig. 10
in Fig. 6, solid and dashed curves denoting results of AMM
and DS, respectively. From comparisons among Figa), 4 detail, we have calculated the quantity defined by[31]
4(b), and §a)—-8(d), we note that fofw|<0.8, time courses
of u(t) andS(t) of the NL model are similar to those of the _1 N 2
L model. The difference between the L and NL models is, To= N; [ = &i(0)°7] (42)
however, clearly realized in cases [off =1.2. Forw=-1.2,
(1) in the NL model oscillates with the bounded magnitude —= —=, ——
[Fig. 8c)] while u(t) in the L model oscillates with divergent =u(O7 =~ u("+ ALY, (42)
magnitude[Fig. 4(a)] although the oscillating period is the which becomes finite in the OSC state but vanist@sis
same(T=22) for L and NL models. In contras&(t) in the  small in the NOSC state, the overline denoting the temporal
NL model oscillates[Fig. 8&d)] while St) in the L model  averagdEq. (29)].
saturates at unityFig. 4b)]. For w=1.2, u(t) in the NL Figure 9a) showso, and o calculated with changingy
model starting from the stationary state wigffi=1.0, is  from 1.6 to 2.4 along the horizontal dotted line in Fig. 6 with
slightly modified by an input spike applied &t 100 with a  7=10, 8=0.001, and\=10, solid and dashed curves denot-
small magnitude 06'=0.024 forS(t), whereasu(t) inthe L ing results of AMM6 and DS, respectively. The oscillation is
model shows an unbounded oscillation &8t) saturates at triggered by an input spike whemexceeds the critical value
S°=1. Figure 8a) shows that as increasingabove 1.2u(t)  of w,(~2.02. The transition is of the second order singg
shows a quasi-oscillation triggered by inputs, by wh&h is continuously increased aw—w,) is increased. We should
is increased at 110t=<130. Forw>2.0, the autonomous note that the peak irg shows thefluctuation-induceden-
oscillation with a period off =22 is induced an&(t) is also  hancement atv~w,, which arises from an increase in the
oscillating with a period off=11. ratio of p(t,t)/(t,t) although both(t,t) and p(t,t) are in-

As discussed above, the oscillation is triggered by an increased. Whew exceeds about 2.3, the oscillation becomes
put spike when parameters are appropriate. In order to studyregular, which is expected to be a precursor of the chaotic
the transition between the NOSC and OSC states in morstate.
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with w=2.04 for all N values, just as shown in Fig(&.
With increasing\, oy is gradually decreased for all values.
Although RMS values ofs in the NOSC state are small,
they become considerable in the OSC states, which is due to
oscillations inS(t) but not due to noises. In contrast, the
N-dependence of, is very small for the parameters inves-
tigated(results not shown
Figure 1@b) shows theB dependence oé, and o for
w=2.0, 2.02, and 2.04 withr=10 andN=10. Forw=2.02,
which is just the critical coupling fo8=0.001[Fig. Xa)], o
(@) logo(N) is gradually decreased with increasingg. For w
=2.00=w,), oy is little decreased with an increase f In
. . . contrast, forw=2.04, gy is first increased with increasing
NL model t=10 N=10 1 and has a broad peak at- 8. where8.=0.04 in AMM and
0.06 in DS. This broad peak ims may suggest that the OSC
state is suppressed by noises althowghcalculated in DS
remains finite at3> B., showing no signs for the NOSC-
OSC transition. It may be possible that the emergence of the
oscillation is not well represented lay, defined by Eqs(41)
and (42) in the case of a larg@. The discrepancy between
results of AMM and DS becomes significant with increasing
B, which is due to a limitation of AMM based on the weak-
04 0.06 - 0.0% noise assumption.
(b) B It has been shown that when model parameters, af 3,
andN are appropriate, the stable oscillations with finte mag-
FIG. 10. (8 The N dependence of; for 7=10 andB=0.001,  pjtydes are induced in NL Langevin ensembles. The
and (b) the B dependence ob for 7=10 andN=10 of the NL  fjyctuation-induced enhancement is realized in the synchrony

model, calculated by AMMsolid curves and DS(dashed curves  negr the second-order transition between the NOSC and OSC
with w=2.04 (triangleg, 2.02 (circles, 2.0 (squarey 1.95 (dia- states.

mond9, and 1.9Q(inverted triangles Errors bars expressing RMS
values ofog of DS, are significant in the OSC state because of the

oscillation of S(t). IV. CONCLUSIONS AND DISCUSSIONS

For calculations of the NL model given by Eq29) and  we may adopt a nonlinear Langevin model given by Eq.
(30), we have adopted AMM6, whose validity is examined in (1) with

Fig. 9b) showing o, for 1.8<w=<2.6 when the levem is

NL model

=10 $=0.001 -

S

0.5+

changed in AMMn: note that the result ah=6 in Fig. qb) F(x)=—ax (a=0), (43
is nothing but the AMM result ofrg in Fig. 9a). The critical
coupling for the NOSC-OSC transition calculated by H(x) = sin(x), (44)

AMMm for m=1-3 is too largecompared to that by DS o , _
(W,=2.02 shown in Fig. 9a). Form=4, we get a reasonable Which is referred to as the NL' model. Equatio@3) and
value ofw,, but the peak value of at w=w, is too small. (44 were previously employed by Ikeda and Matsumfdtp
With furthermore increasing the value, thew-dependence for @ study on chaos in time-delayed systems. By using Egs.
of o, becomes in better agreement with that of DS. The(43) and(44), and the relation given by
optimum value ofm i_s expected to depend on the model H@V(t) = (- 1)" sin(x), (45)
parameters, the required accuracy and the ability of computer
facility. Making a compromise among these factors, we have @D () — (10
decided to adopt AMMG in all our calculations. This choice H (®) =(=1)" codx), (46)
of m=6 has been confirmed by results of AMM which are in we get DEs given by Eq$31)—«(34) but with
good agreement with those of O5ig. 9a)]. D

Figure qc) expresses ther dependence af, and o near Ua(t) = si t exp(— A ) 47
the NOSC-OSC transition for a negatiwewhen thew value ol0) = sin((V) 2 ) “7)
is changed from —-1.4 to —0.6 along the horizontal dotted line

in Fig. 6. The oscillation is triggered by an input spike when yt,1)

w is below the critical value ofv.(~-1.04. The fluctuation- Uy(t) = COS(,U«('E))GXP<— T) (48)
induced enhancement is again realizedsincalculated by

AMM and DS. where all contributions froom=0 to e in Eqgs.(11)—(14) are

The N-dependence ofis has been studied for variowg  included. It is noted that Eq30) with b=1/6 is anapproxi-
~2) with 7=10 andg8=0.001, whose results are depicted in mate form of Eq.(44) for a smallx. Correspondinglyu(t)
Fig. 1Qa). It is noted thatrs with w=2.02 is larger than that andu,(t) given by Egs.(35) and (36) are approximate ex-
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[ T T T T T T T d t,t 2
i 1 moe 9D _ o01 - 3u(02- 3Lt + 2wpltt - 1)+ £,
w =10 dt N
< (53)
©0.5
dp(t,t —m7)
T [91(t) + gy (t = m7)]p(t,t = m7)
2.8 t
v +Wp(t,t — (m+ 1)+ wp(t - 7,t —m7)
FIG. 11. Thew dependence af, andog of the NL' model given ,32
by Egs.(43) and (44), calculated by AMM(solid curves and DS + NA(mT) (form=1), (54)

(dashed curveswith 7=10, 8=0.001, andN=10 (see text Error

pars expressing RMS values are not shown for a clarity of thgyhere gl(t):l—S;L(t)z—Sy(t,t). In their Gaussian approxi-
figure. mation, HT have employed Eq¢51) and (52) with p(t,t
-7)=0, discarding Eqs(53) and (54). It has been claimed
pressions of those given by Eqg7) and(48), respectively, that the Gaussian approximation is not adequate near the
for small w(t) and y(t,t). transition point between the ordered and disordered states,
Figure 11 shows thev dependence ofr, and o of the  although a dichotomous theory yields a fairly good descrip-
NL' model. The NOSC-OSC transition occurs @t=2.29  tjon. This might be due to a neglect of the higher-order con-
above whicho,, is continuously increased and wherghas a  tributions in Eqs(52)—(54), which are expected to play im-
peak. Although the induced oscillation is regular for 2.29portant roles, in particular, near the transition point, as our
<W=2.64, it becomes irregular fon=2.64, which may calculations have showjirig. 9b) and Fig. $b) of Ref.[26]
lead to the bifurcation and chafiy. We note from Figs. @) for FN neuron models
and 11 that thev dependence of the NL model given by Egs.  |n summary, we have proposed a semianalytical approach
(29) and (30) is similar to that of the NL' model given by for a study of dynamics of stochastic ensembles described by
Egs. (43) and (44) although the critical coupling for the Jinear and nonliner Langevin models with delays. Advan-
NOSC-OSC is different between the two models. Ther  tages of our method ax@) the synchronization in ensembles
phase diagram for the NL" Langevin model is almost themay be discussed by taking into account correlations of local
same as that for NL Langevin ensembles shown in Fig. 6and global variablegb) the recursive DEs terminated at fi-
Recently the phase diagram has been experimentally olite m(~6) yield fairly good results compared to those of
tained for a couplecpair of the plasmodium of the slime pss andc) our method is free from the magnitude of time
mold, physarum polycephalumvhere the coupling strength delays though the noise intensity is assumed to be weak,
and delay time are systematically controllggP]. The ob-  which is complementary to SDP]. The proposed method is
served phase diagram is not dissimilar to owr7 phase expected to be useful not only to Langevin ensembles but
diagrams for NL and NL' Langevin models as far as unen-ajso to more general stochastic ensembles with delays. Al-
trained and in-phase oscillating states are concerned. though our method is applicable to the system with an arbi-
Quite recently, Huber and TsimringiT) [17] have dis-  trary size ofN, it is better applied to larger system because of
cussed an alternative nonlinear Langevin ensembles given g mean-field nature. It should be noted that the number of
Eq. (1) with DEs to be solved folN-unit stochastic Langevin model is
F0 =x— 3 (49) NN, in DS with N, trials, while it is(m+3) in AMM m. The
’ ratio between the two numbers becom@sN,/(m+3)
~ 1000, for example, foN=N,=100 andm=6. Actually this
H(x) =X, (50)  reflects on the ratio of the speed for numerical computations

for 1¥(t)=0, which expresses interconnected bistable syspy using the two methods. Taking these advantages of our

tems with delay$14]. By using DSs and analytical methods meut?c?r?'rr\:\gjglaﬁtﬁ %ﬂ:g?/étjtifﬂamzlfs gti Sdc;'?ﬁsirbg;gae;_l\l
based on the Gaussian and dichotomous approximations, and synchronization, which are reported in a following
have discussed the coherence resonance and multistability 8§per[26] '

the system. When we apply our approximation to this non- '
linear model, Eqs(7)—«(10) become
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dy(t,t) APPENDIX A: DERIVATION OF EQS. (7)—(10)

=2[1 - 3u()? = 3¥(tL,)]H(LY) + 2wp(t,t - 7) + 7,
dt Assuming that the noise intensify is small, we express

(52 Eqg. (1) in a Taylor expansion obx; as
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dx (t) 2“’: FO(t) NP E E Ot = 1) O | ¥ From Egs.(Al) and(A4), we gt DEs fordéx;(t)/dt as
= i -7
dt o ¢ i =0 ! dox(t) _ dx(t) _ du(®) (A7)
+ & +19(), (A1) dt  dt dt
where FO0)=FO(u(t)) and HOH)=HO(u(t)). Equations -E Fame gy X0 i oS peng )(bx(t)z” (t,t)”>
(3), (4), and(Al) yield DE for means ofu(t) as =0 @n+1)! 5 (2n)! 2!
(t T 2n+1
d (t) 1 F“”(t) O S W - e TR S Hen- 7
o EE —(x(0) = (2n+ D) o
i ¢=0
X(t—1?" Ht-7t—7)"
HC (t—T) ( " A-ntzo )+§(t). (AB)
NI S HU, -1 120 (2mt 2n!
bl o By using Eqgs(5), (A3), and(A8), we get DEs fody(t,t)/dt
(A2)  as
When we adopt the Gaussian decoupling approximation, avm - EE <&(( )d&((t)> (A9)
erages higher than the second-order moments in(&g) dt N7
may be expressed in terms of the second-order moments
given by o F2(t)
=3 G0 (KO
| n= o (2n+1)!
(SXqy . %) > Ml & for event
all pairings H2n+1(t - T) 2n+1
=0 for odd ¢, 2 ; nzo (2n+1)! (S%(1) Xt = 7))
(A3) )
+ NE (%1 & (1)
where the summation is performed for all{-21)(¢ i
—-3)---3-1 combinations. With the use of the Gaussian de- F20+1p)
coupling approximation given by EqA3), Eq. (A2) be- ——E > B (2™
comes i n-o (2n+1)!
H2n+1(t _ T)
du(t) 1 F@) (1) E > E o Bona o (0 8 (t = )
= VS 3 T ety k= JCT i
L= X(S%;(t = DA+ B2, (A10)
@)t —
2 > 2 Rt — 5 BanfXj(t - DA +10)(1), With the use of the mean-field approximation given by Eq.
i j om0 (2n)! (A5), Eq. (A10) reduces to
(A4) dy(t,t Fe™D(@) [yt t)\"
yét D=2yt )2 ()( (2' )> +2mp(t,t= 1)
where B,,=(2n-1)(2n-3)---3- 1. Adopting the mean-field nt
approximation given b o +
PP given by Hen 1>I<t— r)(y(t— ;,t— r))“+ 2,
(B(DD" = Ht) (1)), (A5) ="
(A11)
we get leading to Eqs(8), (12), and(14). Calculations ofip(t,t)/dt
anddp(t,t—m7)/dt are similarly performed by using the re-
du(t) F<2">(t)(y(t,t)>” lation:
dt = nl 2 dp(t,t - 1 dx; (t
n=0 W:_ZEE<6X(0_XJ(T
o H®Y(¢ - t-rt—7)\"
n=0 - + O xj(t—mr)>. (A12)
(AB) dt
In the process of calculatindp(t,t—m7)/dt, we get new
which yields Eqs(7), (11), and(13). correlation functions given by
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stt-mn = 3 (x&t-mm), (ALY

St-mrt) = %Z (X(t-mDgv).  (AL4)

By using the method of steps in R¢f.3], we get

2

Sit,t—mn) =S{t-mnt) = (ﬁ )A(mT), (A15)

2
which leads to Eq(10).

APPENDIX B: THE SMALL-DELAY APPROXIMATION

We apply the small-delay approximatigB8DA) first pro-
posed in Ref[9] to our model given by Eqq.l) and (2).
When 7 is small, we may expand Eql) for N=1 asx(t
- 7)~X(t) - 7dx(t)/dt to get
dx(t) <

—— =FX(1)+w

dx(t))
dt

HX(V) = H' ()~

+Bp(t) +1°(1). (B1)
Using Eq.(B1), we get DEs foru(t) and y(t,t) given by

PHYSICAL REVIEW E 70, 021911(2004)

d
% =[1-wrhy()][go(t) +Wip(t) +19(1)],  (B2)
dnt,
7$U=2U‘WmKNMKU+mebﬁﬁ
+[1 -wrhy (1) 262, (B3)

whereh;(t)=H’(u(t)). For the L model given by Eqgl),
(2), (18), and(19), Eqgs.(B2) and(B3) become

dﬁ;—it) = (1-wol(-a+wu® +19@1)],  (B4)
% =2(1 -wn)(-a+w)y(t,t) + (1 -wn?p2
(BS)

The 7 dependence of the stationary solutionyéfis shown
by the dotted curve in Fig.(B). The time course of(t) is
plotted by dotted curves in Fig(&.
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